2023年高三数学高考知识点总结大全

时间:2023-05-24 12:20:04 来源:网友投稿

下面是小编为大家整理的2022年高三数学高考知识点总结大全,供大家参考。

2022年高三数学高考知识点总结大全

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它在我们的学习、工作中起到呈上启下的作用,因此我们需要回头归纳,写一份总结了。下面是小编给大家带来的高三数学高考知识点总结大全,以供大家参考!

高三数学高考知识点总结大全

第一部分集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数

1、映射:注意

①第一个集合中的元素必须有象;

②一对一,或多对一。

2、函数值域的求法:

①分析法;

②配方法;

③判别式法;

④利用函数单调性;

⑤换元法;

⑥利用均值不等式;

⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);

⑧利用函数有界性;

⑨导数法

3、复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的'定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性

(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;

(2)是奇函数;

(3)是偶函数;

(4)奇函数在原点有定义,则;

(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

高三数学知识点小结最新

1、数列的定义、分类与通项公式

(1)数列的定义:

①数列:按照一定顺序排列的一列数。

②数列的项:数列中的每一个数。

(2)数列的分类:

分类标准类型满足条件

项数有穷数列项数有限

无穷数列项数无限

项与项间的大小关系递增数列an+1>an其中n∈N

递减数列an+1

常数列an+1=an

(3)数列的通项公式:

如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。

2、数列的递推公式

如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an—1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式。

3、对数列概念的理解

(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性。因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列。

(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别。

4、数列的函数特征

数列是一个定义域为正整数集N_或它的有限子集{1,2,3,…,n})的特殊函数,数列的.通项公式也就是相应的函数解析式,即f(n)=an(n∈N_。

高三数学必修三复习知识点大全

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集